234 research outputs found

    Towards the Gravity Dual of Quarkonium in the Strongly Coupled QCD Plasma

    Full text link
    We build a "bottom-up" holographic model of charmonium by matching the essential spectral data. We argue that this data must include not only the masses but also the decay constants of the J/psi and psi' mesons. Relative to the "soft-wall" models for light mesons, such a matching requires two new features in the holographic potential: an overall upward shift as well as a narrow "dip" near the holographic boundary. We calculate the spectral function as well as the position of the complex singularities (quasinormal frequencies) of the retarded correlator of the charm current at finite temperatures. We further extend this analysis by showing that the residues associated with these singularities are given by the boundary derivative of the appropriately normalized quasinormal mode. We find that the "melting" of the J/psi spectral peak occurs at a temperature of about 540 MeV, or 2.8 T_c, in good agreement with lattice results.Comment: 13 pages, 9 figure

    Roper Resonance and S_{11}(1535) from Lattice QCD

    Full text link
    Using the constrained curve fitting method and overlap fermions with the lowest pion mass at 180MeV180 {\rm MeV}, we observe that the masses of the first positive and negative parity excited states of the nucleon tend to cross over as the quark masses are taken to the chiral limit. Both results at the physical pion mass agree with the experimental values of the Roper resonance (N1/2+(1440)N^{1/2+}(1440)) and S11S_{11} (N1/2(1535)N^{1/2-}(1535)). This is seen for the first time in a lattice QCD calculation. These results are obtained on a quenched Iwasaki 163×2816^3 \times 28 lattice with a=0.2fma = 0.2 {\rm fm}. We also extract the ghost ηN\eta' N states (a quenched artifact) which are shown to decouple from the nucleon interpolation field above mπ300MeVm_{\pi} \sim 300 {\rm MeV}. From the quark mass dependence of these states in the chiral region, we conclude that spontaneously broken chiral symmetry dictates the dynamics of light quarks in the nucleon.Comment: 10 pages, 5 figures, revised version to appear in PL

    Bulk spectral function sum rule in QCD-like theories with a holographic dual

    Full text link
    We derive the sum rule for the spectral function of the stress-energy tensor in the bulk (uniform dilatation) channel in a general class of strongly coupled field theories. This class includes theories holographically dual to a theory of gravity coupled to a single scalar field, representing the operator of the scale anomaly. In the limit when the operator becomes marginal, the sum rule coincides with that in QCD. Using the holographic model, we verify explicitly the cancellation between large and small frequency contributions to the spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure

    Relativistic Quark Spin Coupling Effects in the Correlations Between Nucleon Electroweak Properties

    Get PDF
    We investigate the effect of different relativistic spin couplings of constituent quarks on nucleon electroweak properties. Within each quark spin coupling scheme the correlations between static electroweak observables are found to be independent of the particular shape of the momentum part of the nucleon light-front wave function. The neutron charge form factor is very sensitive to different choices of spin coupling schemes once the magnetic moment is fitted to the experimental value. However, it is found rather insensitive to the details of the momentum part of the three-quark wave function model.Comment: 23 pages, 13 figures, requires axodraw.sty 1 figure corrected, 1 refs. added, some changes in tex

    Moments of Nucleon's Parton Distribution for the Sea and Valence Quarks from Lattice QCD

    Get PDF
    We extend the study of lowest moments, and and , of the parton distribution function of the nucleon to include those of the sea quarks; this entails a disconnected insertion calculation in lattice QCD. This is carried out on a 163×2416^3 \times 24 quenched lattice with Wilson fermion. The quark loops are calculated with Z2Z_2 noise vectors and unbiased subtractions, and multiple nucleon sources are employed to reduce the statistical errors. We obtain 5σ\sigma signals for for the $u,d,$ and $s$ quarks, but is consistent with zero within errors. We provide results for both the connected and disconnected insertions. The perturbatively renormalized for the strange quark at $\mu = 2$ GeV is $_{s+\bar{s}} = 0.027 \pm 0.006$ which is consistent with the experimental result. The ratio of for ss vs. u/du/d in the disconnected insertion with quark loops is calculated to be 0.88±0.070.88 \pm 0.07. This is about twice as large as the phenomenologically fitted s+sˉuˉ+dˉ\displaystyle\frac{_{s+\bar{s}}}{_{\bar{u}}+_{\bar{d}}} from experiments where uˉ\bar{u} and dˉ\bar{d} include both the connected and disconnected insertion parts. We discuss the source and implication of this difference.Comment: 50 Pages 58 Figure

    Effectiveness of an Inpatient Movement Disorders Program for Patients with Atypical Parkinsonism

    Get PDF
    This paper investigated the effectiveness of an inpatient movement disorders program for patients with atypical parkinsonism, who typically respond poorly to pharmacologic intervention and are challenging to rehabilitate as outpatients. Ninety-one patients with atypical parkinsonism participated in an inpatient movement disorders program. Patients received physical, occupational, and speech therapy for 3 hours/day, 5 to 7 days/week, and pharmacologic adjustments based on daily observation and data. Differences between admission and discharge scores were analyzed for the functional independence measure (FIM), timed up and go test (TUG), two-minute walk test (TMW), Berg balance scale (BBS) and finger tapping test (FT), and all showed significant improvement on discharge (P > .001). Clinically significant improvements in total FIM score were evident in 74% of the patients. Results were similar for ten patients whose medications were not adjusted. Patients with atypical parkinsonism benefit from an inpatient interdisciplinary movement disorders program to improve functional status

    Dressed spectral densities for heavy quark diffusion in holographic plasmas

    Full text link
    We analyze the large frequency behavior of the spectral densities that govern the generalized Langevin diffusion process for a heavy quark in the context of the gauge/gravity duality. The bare Langevin correlators obtained from the trailing string solution have a singular short-distance behavior. We argue that the proper dressed spectral functions are obtained by subtracting the zero-temperature correlators. The dressed spectral functions have a sufficiently fast fall-off at large frequency so that the Langevin process is well defined and the dispersion relations are satisfied. We identify the cases in which the subtraction does not modify the associated low-frequency transport coefficients. These include conformal theories and the non-conformal, non-confining models. We provide several analytic and numerical examples in conformal and non-conformal holographic backgrounds.Comment: 51 pages, 2 figure

    The barrel DIRC of PANDA

    Get PDF
    Cooled antiproton beams of unprecedented intensities in the momentum range of 1.5-15 GeV/c will be used for the PANDA experiment at FAIR to perform high precision experiments in the charmed quark sector. The PANDA detector will investigate antiproton annihilations with beams in the momentum range of 1.5 GeV/c to 15 GeV/c on a fixed target. An almost 4π acceptance double spectrometer is divided in a forward spectrometer and a target spectrometer. The charged particle identification in the latter is performed by ring imaging Cherenkov counters employing the DIRC principle

    Strangeness Content in the Nucleon

    Get PDF
    I review recent studies of strangeness content in the nucleon pertaining to the flavor-singlet gA0g_A^0, the sˉs\bar{s}s matrix element and the strangeness electric and magnetic form factors GEs(q2)G_E^s(q^2) and GMs(q2)G_M^s(q^2), based on lattice QCD calculations. I shall also discuss the relevance of incorporating the strangeness content in nuclei in regard to strange baryon-antibaryon productions from proton-nucleus and nucleus-nucleus collisions at SPS and RHIC energies.Comment: 11 pages, 4 figures, Invited talk at V Int. Conf. on Strangeness in Quark Matter, Berkeley, CA, July 20--25, 200
    corecore